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SECTION T

INTRODUCTION

For the case of flow over an airfoil in a freestream at

Mach numbers near 1, small amplitude motions of the body surface
can produce large variations in the aerodynamic forces and moments
acting on the structure. In addition, phase differences between
the flow variables and the resultant forces may be areat. These
characteristics tend to enhance the probability of encountering
aeroelastic instabilities in the transonic flow regime and thus
evidence a need for techniques of analvzina both the flow field

and the structural response for such situations.

In the subsonic or supersonic case, the leadina order flow
equations are linear such that the aerodynamic forces depend
upon the body motion in a linear fashion. Furthermore, the
resultant forces acting on the airfoil may be obtained throuah
superposition by summing the contributions due to the various
types of body motion being considered. This allows the linear
structural equations of motion to be solved independently of the
aerodynamic equations which provide only the force coefficients.
Uncoupling of the fluid and structural equations is not, in
general, possible for the transonic regime due to its inherent

nonlinear nature.

Advances in computational methods (1-16) have made a number
of techniques available for computing unsteady transonic flows.
While several different physical problems have been considered,
the unsteady body motion was generally prescribed as a known
function of time thereby precluding the simulation of aeroelastic
behavior. It is only recently that the application of these
computational procedures to actual aeroelastic problems has
appeared (17,18).

It is the purpose of this report to describe a method for

analyzina the structural response of a two-dimensional airfoil




in transonic flow, and to provide computational examples of the

results obtained by applying this procedure to physical situations
of practical interest. The governing aerodynamic equation of
motion is assumed to be the unsteady low frequency small
disturbance transonic equation for the velocity potential func-
tion which is capable of simulating nonlinear flow phenomena
including irregular shock wave motions. Structural equations

of motion are formulated for a three-degree of freedom airfoil

by modelling the structure as a spring-mass system. The coupled
aerodynamic-structural equations are then simultaneously inteqgrated :

in time such that the flow field and the response of the airfoil

to the resultant aerodynamic forces are allowed to interact in

a manner much like the physical situation.

The method of time integration has already been applied in
a superficial manner for analyzing a one dearee of freedom
airfoil (17). 1In this previous work, several types of motion
were produced by varying the structural parameters. An alternative
point of view is taken in this report. Here, the structural
parameters are presumed fixed and the motion resulting from
various choices of the initial conditions is considered. The
airfoil selected for study is an NACA 64A010 airfoil which is
10? thick and representative of transonic airfoils currently in
use. Plunging, airfoil pitching, and aileron rotation deqrees
of freedom have been allowed and structural parameters have been
assigned representative values. Solutions were obtained for
several choices of initial conditions and non-dimensional
freestream density. The effects of these parameters on the

time-dependent structural response and aerodynamic coefficients

is presented.
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M = fg m(x)dx,

=[O (%, - xim(x)dx,

SR = ;; (xh - x)m(x)dx,
I, = Jg (x, = %) m(x)ax,

and

I, = fi (x, = X) *m(x)ax.

£ = x/c,

T = " 32/3'__ /C'
o

(1)

(5)

(6)

(])

These can be put into a convenient non-dimensional form by defininag:

(9)

(10)
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o = h/c, (11)
; Co - S“/CM, (12) ‘
i
Cf = SB/cM, (13)
{
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* - 2
Eo Ta/C M, (14)
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rr - b 5
te Iﬁ/c M, (15)
E
w, = (c’K, /‘Jj\.‘\‘l)‘/’, (16) }
= : ‘?l‘-'* 1 /2
w (Kﬂ/lw.oM) . (L)
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E
:'n =z D(‘.,’thM, (]Q)
r =D f2w 1 (20)
o R a o, '
{ = e LVOE A 21)
R Db/ o R, (21
and
u = 2M/p_c’. (72)
1f these are substituted into equations (1) - (3), then the ftollowina
result: i
= . -2/ 3
ety + & \\"(l) + & R" (1) + 28 (\“-'A‘\"(l) i
O f L (;\‘)
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(24)
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2 g * * /
+ [(E. - E)E_ + & " + E_B" 2673 3y, R
5@ A7) LEE, )6 .f]d (1) B (1) + wataf' (1)
(25)
h/ir* 2 ) N 'O/SC
o ¢ Bi(r) = &= .
+ .fmsh(r { mh(r)u
The system (23) - (25) may be written as the vector equation
MX® (t)y + DXY(v) *+ KX(t) = C(t)/u (26)

where the initial conditions X(0) and X'(0) complete a description
of the problem.

2.2 Unsteady Transonic Potential Equation

A number of procedures are available for the solution of
unsteady transonic flow problems. Methods of harmonic analysis (3-7)
assume that the unsteady flow may be considered as a small perturba-
tion about a steady state due to the motion of the boundary. These
time-linearized methods fail to treat shock motions exactly and thus
are limited in application to very small amplitude airfoil motions
which constrain shock waves to small displacement about their steady-
state position. 1In addition, the unsteady perturbations are prescribed
to have a harmonic dependence in time. While such methods are not
capable of treating general airfoil motions, they can provide input

for classical aeroelastic computations (18).

A more exact treatment of unsteady transonic flow problems is
provided by integrating the equations of motion in time. Solutions
to the unsteady Fuler equations (8,9) and the full potential
equation (10) have been obtained by explicit finite difference
schemes. Although these methods can in principle be applied to
quite general airfoil motions, they are limited by a time step
restriction for computational stability thereby making practical
calculations prohibitive. If consideration is limited to irrota-
tional flows and low frequency motions, then a reduced form of the

unsteady potential equation results. A fully time-implicit
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method of solution of this equation has been developed (17) such
that no time step restriction for stability exists. In addition,
this equation is capable of simulating nonlinear flow phenomena
including irregular shock wave motions. Solutions of the unsteady
low frequency potential equation have compared auite well with

solutions of the FEuler equations (17).

We now consider the two-dimensional irrotational unsteady
flow over an airfoil. The velocity potential function,!, is

expanded as

i

®(x,y,t) = u cs2/%(&,n,1) (27)

where

]

n = yst/ic, (28)

£ and 1 are given by equations (9) and (10) respectively, and it

is assumed that §<<1l. TIf these expressions are substituted into

the full unsteady potential equation and the coefficients of like
powers of § are equated, then the leadina order result is

- M2yg&—2/3 _ 2 o oyl
[ =~ myemis Ak TIMRE TN, F g = B ra

if 1t is assumed that (1 - M2)§72/% = 0(1).

This is the form of the unsteady low frequency small disturbance
transonic potential equation which will be considered appropriate
for describina the flow. Corresponding boundary conditions for
equation (29) are obtained from the flow tanagencv condition on

the airfoil surface, from the Kutta condition at the trailina edae
with a constant jump in potential across the vortex sheet in the
wake, and by requiring the perturbation velocity to vanish far from
the body.

The unsteady airfoil boundary is defined bv

Y = F(x,t) = 0 for 0 < x g ¢, (30)

s PR - -
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Here

Fix,t) = cS[£(2) + o(1)/8 = (& = E)a(T)/8 = (€ = EIH(E - EIB(1) /8] (31)
where f () corresponds to the specified airfoil geometry; o , a, and

8 are the previously defined plunging, airfoil pitching, and aileron

pitching displacements respectively; and H(f - &f)is the unit step

function. With this, the flow tangencvy condition becomes

by = £7(E) = alt)/8 - H(E - EL)B(T)/8onn=0 for 05 £ 1. (32)
We note that this condition i1s applied on n = 0 as is consistent

with the small disturbance assumption. In addition, to the ordm

considered in equation (29) there is no explicit dependence on o

in the surface boundary condition (32). The wake condition is
applied as

[¢.) =0onn=20 for £ > 1 (33)

ol
Y

where the square brackets indicate the "jump" in the enclosed
1 I

quantity and the condition is again applied alona, = 0. The
tarfield boundary condition is
. Pen ag b ¥ i
(\f‘\‘».) s (J‘n) 0 as !¢ * n X (34)

so that equation (29) and corresponding boundary conditions
(32)-(34) complete a description of the flow field problem if an

initial profile, ¢(f,n,0), is specifiagd.

With this formulation, the unsteady pressure coefficient is
given by

C = «2§ QF i (35)

The corresponding lift and moment coefficients follow as

‘ ~
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SECTION IIX

THE METHOD OF SOLUTION

We now seek a method of obtainina solutions to the coupled
system, equation (26) with appropriate initial conditions and
equation (29) with boundary conditions (32)-(34) and initial
profile ¢ (&L,n,0). This formulation will be considered general
with respect to equation (26) such that anv number of dearees of
freedom are permitted. Equation (26) is first written as an

equivalent first order svstem by definina

Xy (1) = X(r1) (10)

and X2 (1) = X" (1) (4n)

s0 that

Xp(1) = Xa(T) (41)

and 21
X2(t) = M [C(t)/u - 0%, (1) = KX, (1) ]. (a2

Fauations (41) and (42) were then solved bv a d=point Adams-Moul ton
integration in time (20). This is an implicit predictor-corrector
techniague havino a local truncation errvor of order (Ax\J. A

number of other methods, both explicit and implicit, were tried.

It was found that when coupled with the aerodvnamic equation,
calculations eventually became unstable for central difference

and 3-term Tavlor series explicit schemes and for Fuler-Cauchv

and Milne 3-point 1mplicit schemes, even when extremely small time

steps were emploved. A Milne S-point imvlicit technicue with local

11
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truncation error of order (At )6, although stable, appeared to

produce less accuracy than the Adams-Moulton integration.

It will be of interest to compare some time integrated results
with homogeneous solutions to the structural system. In particular,
for »~, the homogeneous result should be recovered. For the
case of C(1r) = 0 the associated eigenvalue problem corresponding
to equations (41) and (42) was considered and the eigenvalues
and eigenvectors obtained. The solution vector was then represented
as the linear combination of the eigenvectors which satisfied the
specified initial conditions. These solutions are thus considered
"exact" as they are free of truncation error which is present in
time integrated results. No attempt was made to obtain normal
modes as this is not in general possible for arbitrary values of

the mass, damping, and stiffness matrices (\,p, k) (21).

An efficient time-implicit finite difference algorithm (13)
has been developed for obtaining solutions to the low frequency
transonic equation. This technique was incorporated in the computer
code LTRAN2, developed by Ballhaus and Goorjian (16) for the
purpose of computing unsteady transonic flows over airfoils
using the form of the potential equation given by (29). Several
minor changes in the basic code were necessary in order to
accommodate a simultaneous solution of the structural equations

(41) and (42). Details of LTRAN2 are briefly summarized here.

The basic LTRAN2 code employs a non-iterative alternatina-
direction implicit (ADI) scheme to advance the solution for the
perturbation potential, ¢, from one time level to the next at
each grid point in the computational flow field. Differencing
in the { -direction is of the mixed type which has been quite
successful in maintaining stability for both subsonic and
supersonic flow regions. Conservation form of the equation is
preserved, which is essential for a proper description of shock
wave motions. While the ADI scheme has no time step limitation
for stability based upon classical linear stability analysis,
instabilities may be generated by the motion of shock waves due

to the mixed differencing. Thus, At must be chosen such that shock
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waves do not travel more than one mesh point in the { - direction
over a single time step. A cubic spline is used to approximate
the airfoil geometric function f({), which is usually provided

as tabular data for NACA airfoils. Aerodynamic moments are
evaluated by Simpson's rule integration according to equations
(36) - (38). A smooth non-uniform computational mesh which is
symmetric about n = 0 is emploved. The grid spacina is such that
points are clustered near the airfoil leading and trailina edges
in the { - direction, and near n = 0 in the n - direction. Mesh
boundaries are taken sufficiently far from the airfoil such that
condition (34) may be approximated. The airfoil surface is
described by 33 mesh points. Details of the grid system are the

following:

a. number of {-voints = 99
b. number of n-voints = 79
&, &E . = 0.00330

min
) 8 AR, = 0.02000

min

€. ~=1033.53087 £ € £ 855.91303
E. =811.12200 € & g 8Y1.122300

Results of computations trom LTRAN? have been shown to
compare well with solutions of the time-dependent Fuler equations,
and have reproduced unsteady transonic behavior which has
commonly been observed expverimentally (16). In order to accommodate
the simultaneous solution of the structural equations (41) and E
(42) 1t was necessary to modify LTRAND such that the time marchina
technique 1s now a two-step (predictor-corrector) procedure.
Although this in effect doubles the computinag time for a fixed

‘1, without this modification stable calculations could not in

general be obtained.
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SECTION 1V

RESULTS

In this section the behavior of numerical solutions obtained
by the method outlined in Section 3.0 is considered. Accuracy
of the solutions is discussed and the choice of structural
parameters indicated. Results are presented for an airfoil
having both one and three degrees of freedom. Solutions were
obtained for fixed initial conditions and several values of the
reduced density,,; . Additional results indicate that for , fixed,
stable or unstable motion can be produced solelv by the choice
of initial conditions. All of the calculations presented here
correspond to an NACA 64A010 airfoil.

4.1 Details of the Computations and Accuracv of the Solutions
In order to indicate the stability of the computational
method, it will be demonstrated that an exact solution of the
coupled aeroelastic svstem of ecuations can be reliablv reproduced
by time integration. For this purpose, the airfoil motion was
forced for three periods of oscillation according to the prescribed

functions.
o(t) = a(t) = B(1) = 0.01745 sin(4.31). (43)

Using a steady-state profile as the initial condition,; equation
(29) was integrated in time bv LTRAN2, After a short veriod of
time the effect of the initial conditions became nealigible such

that the aerodyvnamic forces, CQ,C , and th were veriodic.

mo
Analvtical expressions for these forces were then extracted from

numerical results and introduced into equations (41) and (42).

The structural varameters comprisino the mass, damving, and stiff-
ness matrices (M,P,K) and the reduced densitv , were then chosen
such that the analvtic solution to equations (41) and (42) was
given by the previously prescribed functions (43) ftor forced

motion. At this point the coupled system was inteagrated in time

14




using as initial values the conditions present when the forced

motion was terminated.

This procedure was used to study both stabilitv and accuracy
characteristics of various numerical technicues for intearatina
the structural ecuations of motion. It was found that CQ was the
aerodvnamic coefficient most sensitive to procedural variations.
One result of this studv is shown i1n Fiaure 2 for the case
M = 0.72. The time dependent 1lift 1s displaved for both forced
and free motion. Over three periods of free oscillation the
variation in Cq was never more than 0.5% and it apveared that the
inteqration could have proceeded indefinitelv without instability

and with reasonable accuracy.

We now devote our attention to solutions of the coupled
aeroelastic equations for representative choices of the structural
narameters. Impulsive motion from an equilibrium state will be
the only tvpe of motion considered here. TFor all the results

presented in this section, initial values correspond to

og(0) = a(0) = B(0) = 0O,
g (0) = B (0) = 0,

a " (0) prescribed

with ¢(g,n,0) given bv the steady-state profile for M, = 0.82.
The initial pressure distribution for these results is shown in
Figure 3. It is noted that this case is supercritical with a
shock appearing between 7 = 0.50 and & = 0.60. It should be
vointed out that solutions are not limited to the above initial
values, however it was necessary to fix a certain number of
parameters in order to conduct a reasonable studv. Due to
inherent nonlinearity in the transonic equation, various types

of motion may result depending on the choice of a” (o). This is
quite unlike classical flutter analysis. Phvsically, the initial
conditions ¢ (o), a” (o), and 8 (o)may be interpreted as impulsive

gusts striking the airfoil. By varyina these initial conditions,

stability boundaries may be established. Combinations of these

o™
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conditions need necessarily be considered, however, as super-
position cannot be applied.

The airfoil with pitch point located at the guarter chord
aileron leading edge at 75% of the chord, and aileron hinge point
at 80% of the chord is depicted in Figure 1. These choices
correspond to Eo = 0,25, €f = 0.75 and Ch = 0.80. Structural
parameters were selected as the following:

£, = -0.1818,
{'f = -0-00341
s; = 0.1141,
a; = 0.0346,
A 1 e /R
(Uo = 0.1 = (U-“:) ﬂ_
o w02 m (S B2
Qa U Ta

o«

)' K /I\

= -
ws 0.3 (U“‘ R R e

Various values of the damping coefficients (nu,a“, and aB) and

the reduced density (1) were chosen and will be noted in specific
results. By way of compmarison, if the airfoil is assumed to consist
of a homogenous material of uniform densityv, then the followina

may be obtained:

£, = -0.181%,

Ef = -0.0034,

s; = 0.0846,
and X

£¢ = 0.0052.

For all calculations the time step, At, was specified to be
0.01745. This corresponds to 360 time steps per period of
oscillation at a reduced frequency (wc/U ) of 0.215. Time
accuracy of the solutions was further confirmed by doublina this
nominal value of At and comparinag with previous results. 1t was
found that the solutions agreed to three significant fiqures in
all dependent variables, over several thousand time steps even for

cases which exhibited unstable motion. When the time increment

18




was increased by a factor of five, however, the computations

eventually became unstable. This was most likely due to a
violation of the time step size limitation with respect to the
motion of the shock across the computational mesh which was
previously described. All calculations were verformed on a
CDC Cvber 74 computer and reaquired approximately 20 minutes of

computing time for every 1000 time steps.

4.2 The One Degree of Freedom Case

It is useful to study the behavior of solutions for a
single degree of freedom airfoil. Because there are no super-
imposed modes of motion in this case, the characteristic details
of the solution are quite clear. For an airfoil oscillating in
pitch only, the structural system reduces to equation (24) with
0 = B = 0. PFigure 4 indicates the time resvonse of the sinale
degree of freedom airfoil for Ly = 0.01 and a " (o) = 1.0 for
two values of the reduced density. The homogeneous solution is
also shown for comparison. Here the pitching displacement has
been normalized by the impulsive pitch velocity such that the
homogeneous solution is universal for all choices of a " (o) . This
will prove a convenient form to use for later results when varia-
tions in the initial condition are considered. The time axis is
represented in terms of the number of time steps, N, in order to
emphasize the fact that the resolution of the discretization 1in
time is sufficient to consider the time history a continuum. The
corresponding physical time is easily obtained from equation (10) as

_2/3
t = cAté N/u

L (44)
For the choices of AT and § considered here this results in one

chord length of airfoil travel for every 12.844 time steps.

With &, = 0.01 it is seen that the homogeneous solution is
very slightly damped. For u = 50, the time inteaqrated solution
varies slightly from the homogeneous result. In fact for , = 100
the homogeneous solution was recovered virtually intact. Once

again this contirms accuracy of the numerical method. As the

19




-

1050

]
900

|
750

|
600

\
L N
NUMBER OF TIME STEPS

()]

}a'(o)= ]

ga = 0.0l
|

450

HOMOGENEOQUS SOLUTION

p =10
d
|

300

—_————— 4 =50
150

251

0.0
-25F
- 5.0

a
a' (o)




reduced is 1ncreased, a shift in the oscillation freauency as well
as well as an 1increase in amplitude is noted. Corresponding time
histories for the moment coefficient about the pitch point are

displayed in Figure 5, and are seen to exhibit a behavior similar

to that of the pitching displacement.

For u = 100 and a“ = 0.03 the pitching displacement for
several values of the i1nitial condition is shown in Fiqure 6.

The case o (0) = 4.0 is vractically neutrallv stable. Tt 1=

seen that for o (o) = 1.0 the amplitude of oscillation is about
20% damped 1n two periods of oscillation. Slightly growing
amplitudes are produced with o«  (0) = 7.5. This behavior exempli-
fies the nonlinear character of the coupled aeroelastic syvstem.

Tt is noted that no appreciable chanae in frequency 1s evident

for variation in the initial conditions. Moment coefficients
corresponding to these cases appear in Figure 7. For small time

(N < 200), the anomalous behavior apparent in the cases & (0) = 4.0
and @ (0) = 7.5 is most likely due to starting phenomena and an

adjustment in the phase differvence between o and Fmo-

4.3 The Three Degree of Freedom Case
We now focus our attention on the three degree of free-

dom airfoil. For the results considered in this section all
damping coefficients were assigned the identical value of 0.03
{(1-e+, Lo = by © Lg = 0.03). Unsteady displacements for the
initial condition «a (0) = 1 and several values of reduced
density are given in Figures 8-10 with the homogeneous solution
indicated for comparison. The plunging displacement shown in
Figure 8 is seen to vary from the homogeneous result and experience

a shift in frequency as u increases. Damped motion appears to

occur for u 100 and y1 = 50, but an increasing amplitude is

noted for u 25. 1In Figure 9 this same behavior is observed for
the pitching displacement. There seems to be very little snhift

in frequency for the cases y = 100 and y = 50. It appears that
for large time the response is tending to make the plunge and
pitch frequencies identical. Figure 10 indicates the aileron
displacement for these cases. It is seen that there 1s apparently

damped motion with very little frequency shift for all values of | .
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Corresponding aerodynamic coefficients for these cases are

found in Figure 11-13. In general, they exhibit behavior which

is very similar to that of the displacements. The 1ift and 1
pitching moment are damped for u = 100 and u = 50, but are

growing with u = 25. For all values of u the aileron moment

is damped. It is again indicated that for u = 25 the motion

consists primarily of a coupling between the plunge and pitch

modes only.

As in the case of the one degree of freedom airfoil, we
now consider the time response for fixed 1 and several choices
of the initial condition, & (0). Unsteady displacements for
U = 25 appear in Figures 14-16. Time 1ntearated results are

now compared with the undamped homogeneous solution

(i.e., lo = Q‘ s =0). It has alreadv been indicated that with
U = 25 growing amplitudes of the displacements occurred when :

compared with the damped homogeneous result. But as the damved
homogeneous solution is itself decavina this may be misleadinag,
especially because of the several surerimoosed modes which are
present in the solution of any one of the displacements. The

lona time behavior can alwavs be deduced by integrating suffi-
ciently far in time. TIf we wish only to establish whether
oscillations are arowina or decavina bv observina the relativelv
small time resvonse, then comparison with the unacdamped homoaeneous

result may prove auite useful.

The unsteady pitchina displacement is shown in Figure 14.
While all solutions have shifted in frequencvy from the homoaeneous
result, little variation in freaquency occurs for chanaes in the
initial condition. All results avvear to have arowino amolitudes,
-

5 then for a " (¢) = 1 and a“(0) = 3.

The trend with respect to frequency is verv similar for the vitchinc

but less so for a (0)=

displacement in Figure 15. Here, however, the solution for
x(0) = 5 is clearly growing whereas the other results mav in

fact be damped. This is also true for the aileron displacement

shown in Figure 16.
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Figures 17-19 display the corresponding solutions for the

aerodynamic coefficients with p = 25. The 1lift and pitchina
moment behavior is quite like that of the displacements. Little
variation in frequency is observed for changes in the initial
condition and growina amplitudes are clearly indicated for the
case a (0) = 5. The abrupt chanades in the slope of the aileron
moment are due to the unsteady shock wave oscillatino across the
control surface. This is evident from the surface pressure
distribution shown in Figure 20 for N = 315. The time here
corresponds to relative maximums in the itchinag and aileron
moments and a relative minimum in the lift. For a (0)= 5,
the entire upper surface is now subcritical while most of the
lower surface has become supercritical with the shock located
near the trailing edge. Recall that in the initial profile a
shock was present on both surfaces near mid-chord (see Fiaure 3).
By comparison, for the case a (0) = 1 the shock is displaced

only slightly forward on the upper surface and slightly aft on
the lower surface from its initial position. This type of shock
wave motion is representative of that which can be simulated by
the LTRAN2 code.

To establish the long-time behavior of the solutions, the
case a (0) = 5 and u = 25 was integrated in time for several
thousand time steps. The extended time histories of the dis-
placements for this computation are shown in Figqure 21. As was
predicted from the short-time behavior, all displacements clearlv
exhibit increasing amplitudes. The pitching and aileron dis-
placements are oscillating at approximately the same frequency
which is about twice that of the plunaging displacement. For the
aerodynamic coefficients shown in Fiaure 22, however, all appear
to have the same oscillation frequency. This extended time history
indicates that such calculations may be carried out for marginally
stable cases when the behavior cannot be deduced from a small-time
solution. The long-time solution may in general be questionable
due to the accumulation of truncation error in the time integration.
Results of the forced oscillation study, however, indicate that the
solutions presented here can be considered reliable.
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SECTION V
CONCLUSIONS AND RECOMMENDATIONS

A procedure has been developed for the aeroelastic analvsis
of a two-dimensional airfoil in transonic flow. The method has
been shown to be stable and rgvurate. Solutions have been
vresented for both one and three dearee of freedom airfoils
usinag representative values of structural parameters. Stable
or unstable modes of oscillation were shown to depend upon the

choice of initial values.

An obvious improvement of the work vresented here is the
extension to three spatial dimensions. At the present time, the
onlyv efficient method of solving the three dimensional fluid
dvnamic equations for the unsteady transonic case is bv harmonic
analvsis (3, 5, & 6) which eliminates the nonlinear time devendent
nature of the flow. It is felt that in the near future, however,
time integration of the small disturbance potential equation in
three-dimensions mav be accomplished with reasonable computinag
times. The airfoil can then be represented as a flexible cantilever
beam by a direct extension of the procedure outlined in this report.
Such an analvsais would clearly provide a treatment which more

closely resembles the physical situation.

Due to the assumption of low frequency oscillations, the term
?:r does not apvear in the form of the votential eaquation (29) used
in this revort. While it is felt that in general this assumption
1s justified, some question must be raised about the validity of
the very small-time behavior of solutions, particularly for the
cases of impulsive motion considered here. Neaglect of this term
vrobably has little effect on the long-time airfoil response. At
the vresent time, no efficient fullv time implicit scheme exists

for integration of the potential equation with the term¢TT included.

Finally, the effects of viscosity should not be nealected
1f aerodynamic coefficients are to be accurately predicted.
Instantaneous shock locations, and hence resultant moments, can
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depend greatly upon unsteady viscous interaction. Coupling of
the viscous effects with inviscid flow field calculations is not
a simple task. In the case of unsteady transonic flows only one
procedure for accomplishing this has been suagested (9), and

its present application remains largely an art.
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